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Abstract  
We   designed   and   built   a   robot   artist   that   is   capable   of   creatively   drawing   new   art.   We   trained   a  
machine   learning   model   to   generate   lifelike   images   and   designed   a   printer   that   moves   a   writing  
utensil   horizontally   and   vertically   to   draw   these   images.   By   the   end   of   the   project,   the   artist  
succeeded   in   drawing   the   images   generated   by   the   algorithm.   It   can   print   at   up   to   5.70   cm/s,   and  
deviates   from   drawing   a   straight   line   by   0.367   mm   on   average.   Qualitatively,   the   machine  
learning   model   succeeded   in   creating   realistic   art   comparable   to   that   produced   by   a   human.  
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Introduction  
Motivation  

As   technology   replaces   and   disrupts   various   jobs,   both   white   and   blue   collar,   many  
wonder   what   its   limit   is.   Although   creative   tasks   appear   to   be   safe   from   automation,   we   explore  
the   hypothesis   that   physical   art   can   also   be   created   by   robots.   The   inspiration   for   this   project  
came   from   the   developing   trend   of   non-conformist   art   that   defies   art’s   classical   definitions.   For  
example,   a   banana   duct-taped   to   a   wall   was   once   valued   at   $120,000   (at   least,   before   another  
artist   decided   to   eat   it)   [1].   If   art   is   entirely   up   to   interpretation,   we   wanted   to   stretch   its  
boundaries   by   producing   a   new   form   of   art.   The   purpose   was   to   determine   whether   a   machine   is  
capable   of   producing   realistic,   physical   art   without   human   aid,   meaning   that   the   artist   could  
simply   continue   drawing   new   images   without   instruction.   This   level   of   autonomy   was   meant   to  
simulate   a   human   artist.   If   it   can   do   so,   there   appears   to   be   no   reason   that   its   products   should   not  
be   considered   authentic,   given   the   open-ended   and   creative   nature   of   the   field.   We   realized   that  
the   technology   behind   AI   “creativity”   is   quite   new,   so   there   is   still   plenty   of   space   for   exciting  
research   into   the   topic.   We   had   in   mind   how   interesting   it   would   be   to   watch   a   robot   draw   out   a  
realistic   image   that   had   never   been   seen   by   the   world   before.   Additionally,   we   saw   the   potential  
for   making   the   artist   design   aesthetic   in   itself   by   constructing   the   entire   project   with   wood,   rather  
than   traditionally   used   materials   like   metal   and   plastic.   This   project   also   presented   a   fantastic  
opportunity   to   learn   more   about   mechanical   design   and   engineering   while   implementing   a   new  
computer   science   algorithm.  
 
History  

The   method   of   art   generation,   Generative   Adversarial   Networks   (GAN),   was   created   by   a  
research   scientist   at   Google   Brain   in   2014.   Its   applications   in   the   industry   range   from   security  
(e.g.   fraud   detection)   to   image   editing.   However,   it   has   also   been   used   for   more   recreational  
purposes   such   as   generating   fake   images   of   people   that   look   real   or   creating   cartoon   characters  
[2].   While   researchers   have   explored   generating   such   images   digitally,   the   robot   artist   will   go   one  
step   further   and   physically   draw   the   image,   thus   imitating   a   human   artist.   This   idea   is   not   entirely  
new—in   1973,   artist   Harold   Cohen   created   an   algorithm   called   AARON   to   produce   drawings.  
However,   the   computational   power   required   to   perform   machine   learning   was   simply   not  
available   at   the   time,   so   Cohen   instead   used   manually   made   rules.   As   such,   the   algorithm   is   not  
considered   “creative”   because   of   its   formulaic   nature   (see   Figure   1.1).   For   example,   it   might  
consistently   place   certain   images   near   each   other   in   any   drawing,   or   always   draw   in   a   singular  
style   [3].  

Since   the   development   of   GANs,   the   creation   of   higher   quality,   unique,   and   creative   art  
has   been   made   possible.   The    Rutgers   University's   Art   and   Artificial   Intelligence   Laboratory  
recently   created   a   software   that   generated   art   realistic   enough   to   earn   exhibitions   at   art   fairs.  
Their   algorithm,   AICAN ,   uses   a   modified   GAN   trained   on   historical   art   that   is   more   adept   at  1

making   “creative”   art,   rather   than   generating   images   similar   to   the   ones   it   is   trained   on.   To  
accomplish   this,   they   focused   on   minimizing   the   difference   between   the   images   created   and   the  
classic   art   distribution,   but   also   maximizing   the   difference   between   their   art   and   the   established  
styles   of   art.   This   allowed   the   neural   network   to   learn   how   to   effectively   create   stylistically  
unique   art   that   still   looked   real   [4]   (See   Figure   1.1)   (See   Theory   section   for   more   details).  

1   Artificial   Intelligence   Artist   and   Collaborative   Creative   Partner  
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Figure   1.1:   Art   generated   by   AARON   (L)   vs   art   generated   by   AICAN   (R)   [5,   4]  
 
Of   course,   our   intention   is   not   to   aid   robots   in   displacing   every   job   in   the   world.   While  

images   created   by   AI   are   similar   to   those   made   by   humans,   man-made   art   will   still   have  
importance   in   the   future   because   of   the   scarcity   factor   (e.g.   copies   of   the   Mona   Lisa   cost   a   lot  
less   than   the   original   version).   A   robot   can   always   recreate   the   same   drawing,   but   humans   can  
only   reproduce   their   creative   work   during   their   lifetimes,   if   it   is   even   possible   to   do   so.  

The   robot   artist   will   be   using   the   Cartesian   coordinate   plane   to   navigate   the   drawing  
medium.    The   Cartesian   coordinate   system   was   created   by   French   philosopher   and   mathematician  
René   Descartes   and   was   first   published   in   1637   [6].    It   is   said   that   Descartes   came   up   with   the  
coordinate   plane   system   while   watching   a   fly   on   the   ceiling   from   his   bed.   Descartes   wondered  
what   the   best   system   would   be   to   describe   the   location   of   the   fly   as   it   moved   around   the   ceiling.  
He   decided   that   one   corner   of   the   ceiling   would   be   used   as   a   reference   point.   He   could   then  
specify   how   far   away   the   fly   is   by   measuring   its   distance   from   the   reference   point   in   the  
horizontal   and   vertical   directions.   These   two   measurements   are   the   coordinates   of   the   fly   and   are  
unique   for   every   location   on   the   ceiling.   Descartes'   invention   of   the   coordinate   plane   is  
significant   because   it   created   a   link   between   algebra   and   geometry.   Shapes   could   then   be  
described   algebraically,   opening   up   many   new   avenues   in   the   world   of   mathematics   [6,   7].   For  
the   printer,   the   Cartesian   system   is   useful   because   coordinates   can   be   used   to   describe   an   exact  
location   on   the   drawing   medium   that   the   writing   utensil   must   be   moved   to.  

 
Figure   1.2:   Descartes   Watching   a   Fly   on   the   Cartesian   Grid   [6]  
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Commercial   printers   also   rely   on   the   Cartesian   grid   system   to   navigate   their   drawing  
tools.   The   printer   we   created   is   most   similar   to   a   dot-matrix   impact   printer.   Dot-matrix   printers  
work   by   moving   vertically   and   horizontally   across   the   drawing   medium,   impacting   the   paper  
with   an   ink-soaked   print   head.   The   first   printer   of   this   kind   was   a   teletypewriter   called   the  
Hellschreiber,   invented   by   Rudolf   Hell   in   the   1920s.   The   Hellschreiber   printed   by   splitting   each  
line   of   text   into   columns   broken   into   pixels.   It   would   then   iterate   through   each   column   by  
hammering   dots   onto   the   paper   medium.   Hellschreibers   were   used   during   World   War   II   by   the  
German   military   to   help   carry   out   the   role   of   the   Enigma   machine   in   transmitting   secret  
messages.   They   were   also   useful   for   printing   newspapers   because   they   were   relatively   simple  
and   had   a   few   number   of   moving   parts[8].  
 

 
Figure   1.3:     Hellschreiber   (L)   and   printed   characters   (R)   [9]  

 
By   1957,   IBM   was   manufacturing   and   marketing   its   first   commercial   dot-matrix   printer.   In   the  
1970s   and   ‘80s,   these   quickly   became   the   most   popular   printers   for   use   with   computers   due   to  
their   versatility   and   low   cost   [10].   By   the   1990s,   they   were   replaced   with   inkjet   printers   that   print  
faster   and   more   precisely   by   shooting   ink   droplets   at   specific   locations   on   the   paper   medium.  
Today,   dot-matrix   printers   have   become   nearly   obsolete.   Still,   they   are   not   extinct   because   they  
are   cheaper   than   inkjet   and   laser   printers   and   are   reliable   enough   to   work   for   many   years   without  
expensive   replacements   [11].  

 
Figure   1.4:     IBM-4224   Dot   Matrix   Printer   [12]  
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Design  
 
Printer  

The   robot   artist   printer   design   takes   inspiration   from   the   conveyor   belt   systems   of   both  
3D   and   laser   printers.   We   decided   upon   horizontal   and   vertical   movement   of   the   writing   utensil  
instead   of   moving   the   paper   medium   itself.   This   design   fits   our   vision   for   the   printer   system,  
since   we   want   the   printer   to   be   modular   and   portable,   so   that   it   can   be   placed   on   any   surface   and  
start   drawing.  

The   movement   of   the   writing   utensil   for   drawing   is   dependent   upon   three   motors:   two  
controlling   vertical   movement   (y-axis)   and   one   controlling   horizontal   movement   (x-axis).   The  
motors   drive   conveyor   belts.   Although   we   could   have   only   used   one   motor   to   control   vertical  
movement,   we   decided   to   use   two   motors   to   guarantee   stability   of   movement   across   the   y-axis.  
Stability   is   especially   important,   since   the   two   motors   control   the   movement   of   a   relatively   heavy  
wooden   bar   (See   Figure   2.3).   The   x-axis   motor   and   conveyor   belt   is   installed   in   this   wooden   bar.  
An   attachment   that   holds   a   writing   utensil   is   secured   on   the   conveyor   belt,   so   that   spinning   the  
conveyor   belt   results   in   horizontal   movement   of   the   writing   utensil   (See   Figure   2.4).   This  
wooden   bar   is   attached   by   both   ends   to   the   y-axis   conveyor   belts   (See   Figure   2.2).   The   y-axis  
belts   are   able   to   slide   the   wooden   bar   up   and   down,   resulting   in   vertical   movement   of   the   writing  
utensil.   The   y-axis   motors   and   belts   are   also   encased   by   wooden   boxes.   All   wooden   pieces   are  
laser   cut   on   ¼   inch   wood.   

To   stabilize   the   movement   of   the   horizontal   bar,   pairs   of   stainless   steel   rails   are   added   on  
either   side   of   each   conveyor   belt   (see   Figure   2.2).   The   rails   run   through   the   x-axis   bar   and   limit  
possible   wobbling   of   the   bar.   Dry   lubricant   was   used   to   address   the   issue   of   friction.  

To   attach   the   conveyor   belts   to   separate   parts,   we   originally   wondered   if   we   could   simply  
nail   the   attachments   onto   the   belts.   We   found   inspiration   from   the   conveyor   belt   system   of   a  
Creality   Ender-3   3D   printer.   Instead   of   leaving   the   conveyor   belt   as   a   closed   loop,   the   belt   is   cut  
so   that   there   are   two   open   ends   (Figure   2.1).   The   open   ends   are   threaded   into   slits   on   the  
attachment   and   fastened   so   that   the   attachment   moves   with   the   belt.   This   design   ensures   stability.  
The   Creality   Ender-3   3D   printer   uses   small   brass   clips   to   hold   the   conveyor   belts   in   place.  
However,   these   clips   were   not   available,   so   instead,   the   belts   were   fastened   by   tying   each   end  
into   a   knot.   The   downside   to   this   approach   was   that   it   was   difficult   to   tie   the   knot   so   that   the   belt  
would   be   tight   around   the   motor   and   bearing.   This   difficulty   led   to   problems   in   the   final   design,  
as   the   rightmost   vertical   bar   motor   would   occasionally   be   unable   to   pull   the   conveyor   belt  
because   the   tension   in   the   belt   was   too   loose   (to   be   discussed   further   in   Next   Steps).  
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Figure   2.1:   Creality   Ender-3   3D   Printer   [13]  

 
Similarly   to   an   impact   printer,   the   robot   artist   printer   relies   on   pressing   the   drawing  

utensil   at   certain   coordinates.   A   solenoid   was   used   to   press   and   retract   the   utensil.   The   solenoid  
is   attached   to   six   stacked   slabs   of   wood   each   with   a   hole   in   the   center.   A   writing   utensil   can   be  
placed   inside   the   hole,   and   a   rubber   band   holds   it   in   place.   When   the   solenoid   pushes   down,   it  
pushes   the   wooden   slabs   down   along   with   the   writing   utensil,   therefore   creating   up   and   down  
movement.   
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Drawings  
 

 
Figure   2.2:   Overview   of   Design  

 
Figure   2.3:   Y-Axis   Design  
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Figure   2.4:   X-Axis   Bar   Design  

 
Circuit  

All   components   of   the   Robot   Artist   are   driven   by   the   Arduino   Mega.   The   three   stepper  
motors   we   used   are   wired   to   Sparkfun   Big   Easy   Drivers   and   connected   to   a   power   supply   that  
outputs   6.9V   and   roughly   2.1A   (Figure   2.5).   Each   driver   is   connected   by   three   wires   to   the  
Arduino:   STP,   which   controls   the   microsteps   taken   by   the   stepper   motor,   DIR,   which   controls   the  
direction   in   which   the   stepper   motor   turns,   and   a   ground   wire.   One   problem   that   came   up   when  
using   the   Sparkfun   Big   Easy   Driver   is   that   the   driver   would   quickly   overheat.   From   the   power  
supply,   it   was   evident   that   the   1.3   A   drawn   by   each   driver   was   too   high.   This   problem   was   fixed  
by   turning   the   potentiometers   on   the   drivers.   By   turning   the   dial   on   the   potentiometer  
counterclockwise,   the   amount   of   current   that   each   driver   draws   from   the   power   supply   is  
decreased.   The   decrease   in   current   comes   at   a   price,   however.   When   the   current   decreases,   so  
does   the   maximum   rotational   speed   of   the   stepper   motor.   A   balance   with   the   potentiometer   was  
found,   where   the   drivers   drew   enough   current   to   power   the   stepper   motors   at   a   high   enough  
rotational   speed   while   limiting   the   current   so   that   the   drivers   would   not   overheat.   

A   circuit   was   also   needed   for   the   solenoid.   After   much   testing,   the   solenoid   was  
determined   to   function   stably   at   around   11-13V.   Since   the   maximum   arduino   output   voltage   is   5  
V,   it   cannot   individually   power   the   solenoid.   Instead,   an   external   power   source   is   required   to  
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power   the   solenoid.   The   5V   Arduino   output   acts   as   an   electrical   signal   that   turns   on   a   switch,  
allowing   current   to   flow   from   the   external   power   source   to   the   solenoid.   Traditionally,   a  
transistor   would   be   used   to   complete   this   task;   however,   only   a   MOSFET   was   available.  
MOSFETs   are   used   for   high   current   applications,   while   bipolar   junction   transistors   are   used   for  
low   current   applications.   The   circuit   was   wired   so   that   a   digital   pin   on   the   Arduino   was  
connected   to   the   gate   pin   of   the   MOSFET,   with   a   resistor   wired   from   the   gate   to   ground   (called   a  
pull-down   resistor).   This   pull-down   resistor   (10K   Ohms)   keeps   the   MOSFET   turned   off.   Without  
the   pull-down   resistor,   the   pin   driving   the   MOSFET   will   be   an   input   pin   until   the   Arduino   can  
configure   it   to   be   an   output   pin.   At   this   time,   the   pin   will   be   floating,   which   can   cause   the  
MOSFET   to   be   on.   The   pull-down   resistor   keeps   this   from   happening,   and   ensures   that   the  
MOSFET   only   turns   on   when   the   5V   Arduino   signal   is   received.   The   drain   pin   of   the   MOSFET  
is   wired   to   the   negative   terminal   of   the   solenoid,   while   the   source   pin   is   connected   to   both   the  
negative   terminal   of   the   external   power   source   and   the   Arduino   ground.   The   positive   wire   of   the  
solenoid   is   connected   to   the   positive   terminal   of   the   external   power   source.   Whenever   the  
Arduino   digital   pin   is   set   to   HIGH,   a   5V   electrical   signal   is   sent   to   the   MOSFET   and   turns   it   on,  
allowing   current   to   flow   between   the   negative   terminals   of   the   solenoid   and   the   external   power  
supply.   When   this   happens,   the   solenoid   triggers,   lowering   the   writing   utensil   onto   the   paper.   The  
circuit   can   be   seen   in   Figure   2.5.   

The   external   power   supply   used   to   power   the   solenoid   was   a   makeshift   12V   battery.  
Since   an   actual   12   volt   battery   was   not   available,   a   9V   battery   was   wired   in   series   with   two   1.5  
volt   batteries.   The   two   1.5   V   AA   batteries   were   taped   on   top   of   the   9V   battery,   and   wires   were  
secured   to   the   positive   terminal   of   one   AA   battery   and   the   negative   terminal   of   the   other   AA  
battery.   Nevertheless,   the   makeshift   12   volt   battery   worked   in   powering   the   solenoid.   

 

 



Mangtani,   Tian   10  

 
Figure   2.5:   Schematic   Circuit   Diagram   with   3   Stepper   Motors   and   Drivers   and   1   Solenoid  
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Code  
The   code   for   the   robot   artist   is   split   into   three   files.   The   first   file   (in   Python)   is   for  

training   the   GAN   network   and   storing   the   trained   model.   The   second   file   (in   Python)   is   designed  
to   generate   new   artwork   using   the   trained   model   created   by   the   first   program.   The   third   file   (in  
Arduino   code)   prints   the   generated   image.   The   following   are   descriptions   of   each   file.  

Machine   learning   libraries   allow   developers   to   design   models   without   worrying   about  
recreating   and   optimizing   training   algorithms   (with   their   respective   equations)   to   perform  
efficiently.   The   PyTorch   library   was   chosen   because   of   its   relative   simplicity,   popularity,   built-in  
linear   algebra   libraries,   and   multi-thread   processing   optimizations.   The   code   used   to   train   the  
GAN   was   slightly   modified   from   a   tutorial   created   by   the   PyTorch   developers   (see   Appendix   D).  
The   GAN   was   trained   on   the   CelebFaces   Dataset   which   consists   of   202,599   human   faces   [14].  
After   training   the   model,   the   code   converted   it   into   a   “state_dict”   which   is   a   Python   dictionary  
that   represents   the   parameters   it   learned   during   training   [15].   The   state_dict   was   then   saved   into   a  
file   and   uploaded   with   the   API   code   to   AWS   S3   (see    Server   Architecture ).  

The   end-to-end   art-generating   process   is   as   follows   (see   Figure   2.6).   First,   the   printer  
makes   an   HTTP   request   to   the   online   API   created   using   the   AWS   APIGateway   service.   The   API  
makes   a   call   to   AWS   Lambda   and   the   code   and   state_dict   are   retrieved   from   AWS   S3   (see    Server  
Architecture ).   The   code   works   by   importing   the   state_dict   to   recreate   the   trained   GAN.   It   then  
produces   a   random   noise   vector.   This   random   noise   is   fed   to   the   GAN   generator   network,   which  
produces   a   new   piece   of   art   (see    Generative   Adversarial   Network   Architecture )   of   size   60x60  
pixels.   The   API   code   converts   the   art   into   a   binary   bitmap,   where   every   pixel   is   represented   by   a  
0   or   1.   The   bitmap   is   returned   back   to   the   printer   over   the   same   HTTP   connection.  

The   2D   array   bitmap   is   then   “stepped”   through   by   the   printer.   The   printer   starts   with   the  
first   row   of   pixels   and   progresses   through   each   one   using   a   for   loop.   If   the   current   pixel   is   a   1,  
the   Arduino   writes    HIGH    to   the   solenoid   which   receives   current   via   the   MOSFET   and   pushes   the  
pen   down   onto   the   paper.   If   it   is   a   0,   the   Arduino   writes    LOW    to   the   solenoid   and   the   current  
switches   off,   retracting   the   pen.   After   each   row   is   complete,   the   x-axis   bar   moves   the   solenoid  
back   to   the   left-most   position,   and   the   pair   of   y-axis   stepper   motors   moves   the   x-axis   bar   down  
the   paper   by   a   pixel.   Because   the   stepper   motors   are   precise   to   0.8   rotational   degrees,   the  
individual   movements   by   each   of   the   y-axis   stepper   motors   appear   simultaneous,   and   a   straight  
line   can   be   drawn   when   the   pair   moves   in   coordination.   The   stepper   motors   are   moved   by  
modulating   the   input     to   their   drivers’   STP   ports   on   the   Arduino   Mega.   The   direction   is   similarly  
flipped   by   modulating   their   DIR   ports.  

 
Figure   2.6:   End-to-End   Printing   Process  

 
Server   Architecture  

In   order   to   build   the   API,   three   AWS   services   are   used:   S3,   Lambda,   and   APIGateway.  
AWS   Lambda   is   a   serverless   computing   service,   meaning   that   developers   can   create   functions   in  
the   cloud   without   building   dedicated   servers.   The   Lambda   function   generates   a   new   image   when  
it   is   called.   In   order   to   build   an   API   for   the   function,   we   used   APIGateway.   Specifically,   a   REST  
API   was   created   because   Amazon   does   not   make   Lambda   functions   compatible   with   HTTP   APIs  
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[16].   Lambda   functions   can   be   used   without   an   API;   however,   this   method   is   much   more   difficult  
given   the   lack   of   AWS   Arduino   libraries.   The   API   allows   us   to   make   a   URL   for   the   Lambda  
function,   allowing   the   Arduino   to   simply   make   an   HTTP   request   to   the   URL   (via   the   Ethernet  
shield).   When   a   request   is   made   to   the   API,   a   new   serverless   instance   is   booted   up   by   AWS,   and  
the   Lambda   function   runs.   Lambda   limits   code   packages   that   are   directly   uploaded   to   their  
service   to   10MB   in   size   when   zipped.   Our   package   is   much   larger,   around   200MB   when   zipped  
because   it   includes   the   PyTorch   library   and   the   state_dict   of   the   trained   GAN.   As   such,   we  
needed   to   store   the   package   in   S3   (Simple   Storage   Service) .   The   Lambda   function   is   linked   to  2

the   code   package   in   S3   and   downloads   it   whenever   the   function   is   initiated   by   an   API   call.  
 

 
Figure   2.7:   Interaction   between   AWS   services  

Theory  
 
Stepper   Motor  

One   might   wonder   why   a   stepper   motor   is   used   for   our   printer   instead   of   a   traditional   DC  
motor.   DC   motors   have   a   major   limitation—there   is   no   way   to   precisely   control   how   many   times  
a   regular   DC   motor   spins.   Stepper   motors   are   brushless   DC   motors   that   move   in   steps,   as   the  
name   implies.   The   rotor   is   made   from   two   discs   shaped   like   little   gears.   One   of   these   discs   is   a  
magnetic   north   pole,   while   the   other   is   a   magnetic   south   pole.   The   teeth   of   these   two   discs  
alternate   (as   shown   in   Figures   3.1-3.3).   Then,   multiple   coils   of   wire   that   are   organized   in  
“phases”   (groups)   are   oriented   around   the   rotor.   Although   the   number   of   wire   coils   differ  
depending   on   the   type   of   stepper   motor,   the   four   coil   stepper   motors   we   used   had   coils   oriented  
ninety   degrees   from   each   other.   Opposite   coils   are   paired   together   in   a   phase,   and   when   the   phase  
is   energized,   the   electromagnetic   coils   pull   teeth   towards   them.   Then,   the   other   phase   is  
energized,   turning   the   rotor   again.   In   this   way,   the   motor   rotates,   moving   one   step   at   a   time   [17]  
(Figure   3.1-3.3).   

2   S3   allows   developers   to   upload   large   folders   to   the   cloud.  
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Figure   3.1-3.3:   Diagram   of   the   Inner   Workings   of   a   Stepper   Motor  

From   left   to   right:   how   the   Stepper   Motor   spins   [18]  
 

Because   of   its   ability   to   move   in   microsteps,   stepper   motors   are   used   to   achieve   precise  
positioning   or   a   controlled   speed.   However,   the   limitations   of   stepper   motors   are   that   they   are  
inefficient   and   have   no   feedback,   meaning   that   they   do   not   record   position,   unlike   servo   motors.   

There   are   two   types   of   stepper   motors:   unipolar   and   bipolar.   In   unipolar   stepper   motors,  
the   phases   are   always   energized   the   same   way.   One   coil   will   always   be   positive,   and   the   other  
will   always   be   negative.   The   disadvantage   with   unipolar   drivers   is   that   there   is   less   torque  
because   only   half   the   coils   are   energized   at   the   same   time.   Bipolar   drivers,   on   the   other   hand,  
reverse   current   flow   through   the   coil.   This   means   that   the   coils   are   energized   with   alternating  
polarity,   so   all   the   coils   can   work   to   turn   the   motor   [19].   

A   stepper   motor   driver   is   used   along   with   the   stepper   motor   itself   (See   Circuit   Diagram  
2.5).   A   stepper   motor   driver   is   a   driver   circuit   that   sends   current   through   phases   in   pulses   to   the  
motor.   The   stepper   motor   driver   that   is   used   for   the   printer   is   a   microstepping   stepper   motor  
driver.   The   advantage   of   a   microstepping   driver   is   that   it   gives   very   fine   motion   resolutions,  
which   is   desired   for   the   printer.   A   microstepping   driver   essentially   increases   and   decreases  
current   along   a   sine   wave,   so   no   pole   is   ever   completely   off   [17].   
 
Solenoid  

The   solenoid   is   used   to   lift   and   push   the   drawing   tool   on   and   off   the   drawing   medium.  
The   type   of   solenoid   used   is   a   linear   electromechanical   actuator   solenoid.   A   solenoid   converts  
electrical   energy   to   mechanical   energy   where   an   electromagnetic   coil   repels   a   magnetic   actuator  
into   linear   motion   [20].   The   magnetic   field   produced   by   the   electromagnetic   coil   is   directly  
proportional   to   the   current   and   the   density   of   turns.   The   circuit   for   the   solenoid   involves   a  
MOSFET,   a   power   supply,   and   the   Arduino   Mega.   The   MOSFET   and   the   power   supply   are   used  
to   amplify   the   current   from   the   Arduino   digital   output,   triggering   the   solenoid   without   burning  
out   the   Arduino   pins.   The   solenoid   can   then   be   controlled   from   the   Arduino   code.   Refer   to  
Figure   2.5   for   the   circuit.  
 
Cartesian   Grid  

The   concept   of   using   a   pair   of   perpendicular   axes   for   printing   was   inspired   by   the  
Cartesian   grid.   The   x-axis   is   commonly   a   horizontal   line,   while   the   y-axis   is   a   vertical   line.   An  
axis   is   a   reference   line,   and   the   two   axes   used   in   the   Cartesian   coordinate   system   intersect   at   the  
origin.   The   two   axes   also   divide   the   plane   into   four   different   quadrants,   where   the   first   quadrant  
contains   a   set   of   numbers   that   are   both   positive.   
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For   the   printer,   a   Cartesian   coordinate   system   is   also   used   in   a   different   way.   A   two  
dimensional   array   can   act   as   a   Cartesian   system,   where   a   point   can   be   uniquely   described   by   two  
numbers.   Specific   locations   can   be   designated   where   the   printer   will   make   a   mark   on   the   paper,  
and   others   where   the   printer   will   not.   However,   one   difference   between   two   dimensional   arrays  
and   the   coordinate   system   is   that   in   the   coordinate   system,   a   positive   set   of   coordinates   is   above  
and   to   the   right   relative   to   the   origin   (first   quadrant).   With   two   dimensional   arrays,   the   first  
quadrant   is   below   and   to   the   right   of   the   origin.   This   is   because   the   set   of   numbers   used   in   a   two  
dimensional   array   represent   the   row   number   and   column   number.   Row   numbers   increase  
downwards,   while   column   numbers   increase   towards   the   right.   When   the   printer   was   set   up,   this  
concept   of   the   first   quadrant   being   downwards   and   to   the   right   was   kept   in   mind.   When   the  
printer   is   about   to   begin   drawing   an   image,   it   is   placed   at   its   own   origin.   If   the   drawing   area   of  
the   printer   is   said   to   be   a   coordinate   plane,   then   we   would   want   the   origin   to   be   the   highest   point  
to   the   left.  
 
Neural   Networks  

The   artist   uses   a   neural   network   architecture   known   as   Generative   Adversarial   Network  
(GAN).   Invented   recently,   GANs   are   used   to   generate   images,   text,   or   any   other   kind   of   data   that  
is   similar   to   the   data   it   is   trained   on.   For   example,   a   GAN   trained   on   images   of   dogs   can   generate  
new   pictures   of   dogs   that   aren’t   real   but   look   like   they   could   be.   

A   standard   neural   network   receives   training   data,   which   consists   of   inputs   and   their  
respective   outputs.   It   then   learns   to   generate   the   correct   output   given   new   input.   Neural   nets   are  
constructed   from   “neurons”,   which   are   found   in   different   layers   that   are   interconnected   by  
“synapses.”   Synapses   are   valued   by   their   weights   (the   coefficients   of   the   function   produced   by  
training).   The   layers   are   organized   in   this   sequence:   input   layer,   hidden   layers,   and   output   layer.  
At   the   start   of   the   training   process,   the   weights   are   all   initialized   to   random   values.   The   network  
then   starts   forward   propagation—the   input   vector   is   dot   multiplied   by   the   matrix   of   weights  
attaching   it   to   the   first   hidden   layer   (see   Figure   3.4).   An   activation   function,   the   sigmoid   function  
in   the   case   of   classification ,   is   applied   to   the   outputs   of   this   multiplication,   resulting   in   values  3

between   0   and   1.   The   same   process   is   then   applied   with   the   output   vector   and   the   weights   matrix  
of   the   next   hidden   layer,   until   the   output   layer   is   reached.   The   multiplication   of   weights   and  
inputs   is   depicted   in   the   equations   in   Figure   3.4.  

3   The   sigmoid   function   is   a   type   of   activation   that   converts   an   input   number   into   a   value   between   0   and   1.   This   is  
useful   for   classification   because   the   outputs   can   be   rounded   to   binary.  

 



Mangtani,   Tian   15  

   
Figure   3.4:   Example   Neural   Network,   where   equations   represent   dot   multiplication   of  

weights   with   inputs   [21]  
 

The   network   then   evaluates   the   final   output   by   calculating   the   error.   If   it   predicted   0.3,  
but   the   actual   output   (from   the   training   data)   was   1,   the   error   would   be   0.7.   A   loss   function   is  
then   applied   to   the   error,   and   this   loss   is   used   to   update   the   weights   matrices   of   the   network   via   a  
process   called   backpropagation.   During   backpropagation,   each   weight   is   adjusted   by   the  
calculated   loss,   and   the   magnitude   of   this   adjustment   can   be   amplified   or   reduced   depending   on  
the   learning   rate,   a   parameter   that   is   determined   before   training   is   initiated.   The   final   result   is   that  
the   network   is   composed   of   a   highly   complex   polynomial   function   which   can   be   applied   to   any  
input   vector   and   produce   a   desired   output.   The   optimization   algorithm   is   discussed   in   detail   in  
Appendix   C.  
 
GAN   Architecture  

A   GAN   consists   of   two   separate   neural   networks,   a   discriminator   and   a   generator.   The  
generator’s   job   is   to   create   new   images   that   closely   match   the   subject   of   the   training   data.   The  
discriminator’s   job   is   to   distinguish   the   fake   images   created   by   the   generator   from   actual   images.  
Both   networks   rely   on   each   other   to   improve:   the   generator   is   optimized   to   fool   the   discriminator  
into   classifying   its   fake   images   as   real   pictures,   and   the   discriminator   is   optimized   to   not   be  
fooled.   The   core   parameter   of   a   neural   network   is   the   loss   function,   which   evaluates   the  
network’s   performance   so   it   can   improve.   While   the   discriminator   attempts   to   minimize   its   loss  
in   recognizing   fake   images,   the   generator’s   goal   is   to   maximize   the   loss   of   the   discriminator.  
Both   networks   are   trained   competitively   in   this   way   (see   Figure   3.4)   [22].  

The   type   of   GAN   used   for   the   robot   artist   is   a   Deep   Convolutional   GAN   (DCGAN).   This  
means   that   both   neural   networks   are   based   on   convolutional   layers,   which   have   been   proven   to  
be   especially   effective   for   dealing   with   image   data   [23].   Convolutional   layers   are   useful   because  
they   allow   us   to   map   inputs   into   outputs   of   a   different   size,   either   adding   or   cutting   information  
from   the   inputs   (see   Figure   3.5)   [24].   In   the   discriminator,   the   convolutional   layer   is   trained   to  
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cut   out   useless   information   from   the   input   images,   resulting   in   an   output   that   is   particularly  
useful   for   analyzing   the   image’s   authenticity.   Think   of   this   process   like   filtering   out   anything   that  
doesn’t   help   the   discriminator   identify   an   image   as   fake   or   real.   In   the   generator,   the  
convolutional   layers   take   an   input   (such   as   the   initial   random   noise   we   feed   the   network)   and  
map   it   to   an   output   that   more   closely   resembles   real   images   in   the   training   dataset.  

 
Figure   3.5:   A   convolutional   network   maps   the   image   input   matrix   into   an   output   that   is  

more   useful   for   the   machine   learning   task,   which   is   classification   in   this   particular   case   [25].  
 

For   the   purposes   of   this   project,   the   architectures   for   both   the   generator   and   discriminator  
were   created   using   a   tutorial   published   on   DCGANs   [26].   Both   networks   are   built   with   five  
convolutional   layers,   each   one   modifying   the   size   of   the   inputs   by   applying   filters   (which   are  
fine-tuned   during   training).   In   the   generator,   these   layers   expand   the   random   noise   vector   input  
into   grids   of   4x4,   8x8,   16x16,   32x32,   and   64x64   pixels,   in   that   order.   In   this   way,   a   randomly  
generated   vector   of   size   100   is   converted   into   a   64x64   pixel   matrix.   In   the   discriminator,   the  
same   process   occurs,   but   starting   with   a   64x64   pixel   grid   and   ending   with   a   binary   scalar  
output—0   or   1   (indicating   whether   the   image   is   real   or   fake).   The   optimization   algorithm   used  
for   both   networks   is   known   as   Mini   Batch   Gradient   Descent.   Mini   Batch   works   via   the   following  
two   steps.   The   training   dataset   is   split   up   into   “batches,”   each   containing   128   images.   The   losses  
and   the   mean   of   their   gradients   are   then   calculated   for   the   entire   batch,   and   the   weights   of   the  
network   are   updated   using   the   mean   (see   Appendix   C).   
 
GAN   Training  

The   training   process   is   as   follows   (see   Figure   3.4).   First,   the   discriminator   is   trained   on   a  
dataset   of   real   images,   essentially   learning   what   a   real   image   looks   like.   The   generator   then  
creates   a   dataset   of   fake   images.   At   the   beginning,   the   generator’s   fake   images   look   like   random  
noise   because   it   has   not   yet   learned   how   to   make   realistic   art.   These   images   are   fed   into   the  
discriminator.   The   loss   of   the   discriminator   is   used   to   update   its   weights;   i.e.   the   discriminator   is  
trained   on   these   images,   learning   that   they   are   fake.   Then,   the   fake   images   are   labeled   as   real.  
They   are   fed   into   the   discriminator   and   the   loss   is   calculated.   However,   this   calculated   loss   is   not  
used   to   update   the   discriminator   weights   because   the   images   were   labeled   as   real,   when   they   are  
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actually   fake.   Instead,   the   purpose   of   this   calculated   loss   is   to   update   the   generator’s   weights  
[26].   The   reason   we   do   this   is   to   make   the   generator   minimize   the   discriminator’s   loss   when   it   is  
being   fooled;   i.e.   make   the   generator   maximize   the   true   loss   of   the   discriminator.   This   method  
accomplishes   the   “Inverted   Loss”   task   in   Figure   3.4.   Finally,   once   the   generator’s   weights   have  
been   updated   with   the   discriminator’s   loss,   the   training   process   restarts,   marking   the   end   of   an  
epoch.   Eventually,   as   the   generator’s   weights   are   tuned   to   maximizing   the   loss   of   the  
discriminator,   its   outputs   begin   to   resemble   real   images.  

 

 
Figure   3.6:   Training   Process   of   GAN   Discriminator   and   Generator  
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Results  
 

 
Figure   4.1:   Robot   Artist  

 
The   Robot   Artist   successfully   generated   and   printed   new   artwork   (see   Figures   4.2,   4.3).  

Due   to   the   limitations   of   the   current   situation   with   COVID-19,   we   were   unable   to   successfully  
incorporate   the   API   call   into   the   Arduino   code   (see   Conclusions),   although   we   did   manage   to  
make   the   separate   components   work.   As   such,   we   were   able   to   generate   images   and   manually  
import   them   into   the   Arduino.  
 

Color   Image  Monochrome   Image  Printed   Image  

  

Figure   4.2:   First   Generated   Face   and   Final   Printout  
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Monochrome   Image  Printed   Image  

 
 

Figure   4.3:   Second   Generated   Face   and   Final   Printout  
 

Time   to   Train  Processor  #   Cores  Speed  

4hr  Intel   Core   i9  8  2.4   GHz  

Figure   4.4:   GAN   Training   Specs  
 

 
Figure   4.5:   Generator   and   Discriminator   Loss   Over   4   Hours   of   Training  
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Delay  
(Microseconds)  

Trial   #1(s)  Trial   #2   (s)  Trial   #3   (s)  Average   (s)  Average  
Speed   (cm/s)  

100  2.21  2.21  2.16  2.19  5.70  

200  4.30  4.32  4.15  4.26  2.94  

300  6.11  6.21  6.33  6.22  2.01  

400  8.12  8.18  8.08  8.13  1.54  

500  10.02  10.11  10.35  10.2  1.23  

Figure   4.6:   Time   (s)   that   it   takes   for   the   printer   to   draw   a   12.5   cm   line   at   different   delays  
 

 
Figure   4.7:   Speed   vs.   Delay  
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Line   numbers  Trial   #1   (mm)  Trial   #2   (mm)  Trial   #3   (mm)  

1-2  5.14  4.95  5.93  

2-3  6.27  6.26  6.22  

3-4  6.53  6.24  6.22  

4-5  6.16  6.43  6.32  

5-6  6.46  6.59  6.34  

6-7  6.23  6.03  6.34  

7-8  6.27  5.72  6.59  

8-9  6.16  6.24  6.28  

9-10  6.17  6.41  6.59  

Mean  6.15  6.10  6.31  

Standard   Deviation  0.40  0.50  0.20  

Figure   4.8:   Mean   and   Standard   Deviation   of   distances   between   horizontal   lines   drawn   (i   =  
1000)  

 
Conclusions  

We   trained   the   two   GAN   neural   networks,   the   generator   and   discriminator,   over   5   epochs  
on   a   Macbook   Pro   (see   Figure   4.4),   meaning   that   the   training   dataset   of   images   was   iterated   over  
5   times.   Due   to   the   competitive   nature   of   the   networks,   as   programmed   into   their   loss   functions  
(see   Machine   Learning   in   Section   4),   their   losses   decreased   over   each   epoch   until   converging   on  
relatively   low   values,   as   depicted   in   Figure   4.5.   By   the   end   of   the   training   process,   the   generator  
network   was   capable   of   creating   images   that   were   realistic   enough   to   fool   the   discriminator   into  
classifying   them   as   real.   Qualitatively,   we   also   observed   that   these   images   were   extremely  
realistic   (see   Figure   4.2).   The   loss   for   both   networks   drops   over   5   epochs,   but   after   about   3  
epochs   the   change   in   loss   was   negligible.   As   such,   if   we   were   to   repeat   the   lengthy   training  
process,   we   would   reduce   the   number   of   epochs.  

The   creation   of   the   API   was   not   without   its   errors   and   debugging   efforts.   Of   these,   the  
primary   issue   was   dealing   with   AWS   Lambda’s   hard   cap   on   the   size   of   the   deployment   package  
containing   the   PyTorch   library,   the   state_dict,   and   the   code   itself.   While   S3   allowed   us   to  
increase   the   limit   from   10MB   (zipped)   to   50MB   (zipped),   our   zipped   package   remained   at  
around   200MB.   We   determined   that   the   PyTorch   library   was   the   primary   culprit,   at   around  
600MB   in   unzipped   size.   Realizing   that   we   only   used   the   neural   network   sublibrary,   we   deleted  
the   majority   of   its   files   and   modified   the   package   requirements   to   salvage   the   neural   network  
library   by   itself.   This   reduced   the   total   package   size   to   under   50MB,   and   we   were   able   to   create  
the   API.   Due   to   the   stay-at-home   order,   we   were   unable   to   physically   work   together   over   the  
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final   phase   of   our   project:   integrating   the   API   call   with   the   Arduino   code.   While   we   succeeded   in  
programming   the   Ethernet   shield   to   make   HTTP   requests,   we   couldn’t   develop   and   debug   the  
code   to   parse   the   response   into   a   JSON   object   and   extract   the   2D   grid   into   an   Arduino   array.   See  
Next   Steps   for   our   plan   to   complete   this.  

Given   that   we   were   unable   to   properly   integrate   the   API   response,   we   decided   to  
hard-code   the   2D   array   that   represents   the   generated   image.   The   GAN   was   trained   to   produce  
64x64   pixel   images,   but   when   we   placed   them   in   the   code,   the   Arduino   returned   a   memory   error  
due   to   the   size   of   the   code   file.   To   solve   this,   we   scaled   down   the   output   images   to   60x60   pixels  
(the   maximum   sized   array   we   could   hard-code).   However,   when   we   do   fix   the   API   call,   we   will  
revert   back   to   the   original   64x64   resolution.  

From   the   mechanical   scope,   the   printer   functions   well,   but   that   isn’t   to   say   that   it   is  
perfect.   While   drawing   the   generated   images,   we   noticed   that   the   lines   it   drew   were   not   equally  
spaced.   After   observing   this   precision   error,   we   decided   to   test   the   spread   of   line   spacing.   The  
printer   was   programmed   to   draw   ten   straight   lines   horizontally,   moving   down   a   set   amount   of  
steps   (i   =   1000)   after   each   line   is   drawn.   Then,   using   a   caliper,   the   distance   between   the   first   line  4

and   the   next   was   measured,   the   second   line   and   the   third   line,   and   so   on.   The   standard   deviation  
of   the   distance   between   the   two   lines   was   calculated   to   represent   the   consistency/precision   of   the  
two   stepper   motors   that   work   together   to   move   the   horizontal   bar   vertically.   After   executing   this  
experiment   with   three   trials,   we   found   the   average   standard   deviation   to   be   0.367   millimeters.  
This   means   that   on   average,   the   space   between   two   lines   drawn   differs   from   the   mean   by   0.367  
millimeters.   Although   this   result   isn’t   as   low   as   we   hoped   it   might   be,   it   is   still   a   very   small  
spread,   meaning   that   the   stepper   motors   are   very   precise.   

Aside   from   the   stepper   motors   themselves,   there   are   other   areas   where   the   printer   could  
be   improved.   When   we   look   at   the   images   drawn   by   the   printer   in   Figures   4.2   and   4.3,   we   see  
that   each   line   drawn   by   the   printer   starts   with   a   small   “hook.”   The   hook   occurs   due   to   the   fact  
that   the   attachment   that   holds   the   writing   utensil   has   some   leeway   on   the   rails,   meaning   that   it   is  
able   to   bend   downwards   and   upwards   slightly.   Normally,   because   of   the   weight   of   the  
attachment,   it   sags   downwards   so   the   writing   utensil   is   tilted   slightly   upwards   (relative   to   the  
drawing   direction   on   the   paper).   When   the   solenoid   pushes   down,   however,   the   force   applied   by  
the   writing   utensil   on   the   paper   is   enough   to   overcome   the   gravitational   force   acting   on   the   whole  
attachment,   straightening   the   writing   utensil   at   an   angle   perpendicular   to   the   paper.   This   causes  
the   writing   utensil   to   correct   itself,   tilting   slightly   downwards.   This   same   concept   also   explains  
why   the   lines   drawn   by   the   printer   drift   upwards   at   the   end   of   each   line.   

To   complete   a   full   drawing   of   a   two   dimensional   array   of   size   60x60   pixels,   the   printer  
took   around   eight   and   a   half   minutes.   However,   the   time   it   takes   for   the   printer   to   complete   a  
drawing   depends   on   a   number   of   factors.   First   of   all,   the   more   points   that   the   printer   has   to   mark,  
the   more   time   it   will   take.   Each   time   the   solenoid   presses   down,   a   delay   of   two   hundred  
milliseconds   is   processed   to   make   sure   that   the   printer   does   not   start   moving   before   the   solenoid  
has   completely   lowered   the   writing   utensil.   Another   factor   is   the   speed   at   which   the   motors  
move.   The   speed   of   the   motors   is   controlled   by   delay   statements   after   writing   HIGH   and   LOW  
consecutively   in   the   Arduino   code.   The   larger   the   delay,   the   slower   the   stepper   motors   turn.   The  
fastest   speed   of   the   stepper   motors   is   achievable   by   removing   the   delay   statement   altogether;  
however,   the   faster   the   stepper   motor   turns,   the   more   current   it   draws.   As   we   learned,   the   more  

4   While   conducting   this   experiment,   certain   design   errors   were   ignored   (right   vertical   bar   stepper   motor   not   always  
pulling   the   conveyor   belt,   crooked   horizontal   bar).   Errors   are   discussed   in   Next   Steps.   
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current   it   draws,   the   faster   the   stepper   motor   driver   heats   up.   For   these   reasons,   the   relationship  
between   delay   (microseconds)   and   speed   (meters/second)   was   tested.   In   the   experiment,   the  
delays   100,   200,   300,   400,   and   500   microseconds   were   tested   (Figure   4.6).   The   results   indicate  
that   each   100   microsecond   increase   in   delay   results   in   roughly   a   two   second   increase   in   the   time  
it   takes   to   draw   the   12.5   centimeter   line.   The   speed,   on   the   other   hand,   does   not   have   linear  
change.   This   is   expected,   however,   since   a   constant   number   divided   by   a   variable   with   linear  
change   should   produce   a   rational   equation   (as   seen   in   Figure   4.7).   

Additionally,   three   different   writing   utensils   were   tested   with   the   goal   of   drawing   in   a  
way   that   most   closely   resembled   the   generated   image.   The   first   writing   utensil   we   tested   was   the  
classic   pencil.   However,   the   pencil   brought   up   a   multitude   of   problems.   First   of   all,   the   lead  
would   break   if   too   much   pressure   was   applied   on   the   pencil   by   the   solenoid.   Next,   the   pencil  
would   get   more   and   more   dull   as   the   image   was   drawn,   which   means   that   lines   drawn   later  
would   be   wider   and   less   distinct.   An   extremely   sharp   pencil   would   draw   very   thin   lines,   which  
would   lead   to   large   gaps   between   lines   because   of   the   resolution   of   the   image.   This   last   problem  
became   a   recurring   issue,   as   any   thin   tip   pencil   or   pen   would   create   too   much   white   space  
between   lines.   The   obvious   solution   was   to   use   a   sharpie   or   other   type   of   marker   with   a   thicker  
drawing   point.   However,   we   were   limited   by   the   size   of   the   hole   used   to   fit   the   writing   utensil,   as  
this   issue   was   not   considered   during   our   design   process.   In   the   end,   the   writing   utensil   we   used  
for   our   final   drawings   was   a   thin   Crayola   marker,   which   drew   lines   thicker   than   that   of   a   pencil  
or   pen,   especially   when   more   force   was   applied.   The   white   space   problem   remained,   still   evident  
in   Figures   4.2   and   4.3.   But,   the   marker   minimizes   this   problem   into   a   minor   annoyance,   since   it  
covers   up   a   majority   of   the   white   space   that   was   not   covered   by   pens   or   pencils.   
 
Next   Steps  

Due   to   the   stay-at-home   order,   there   are   a   few   steps   that   we   would   still   like   to   implement  
when   we   have   the   chance   to   work   together.   The   robot   artist   is   now   functional   and   able   to   print  
out   the   pictures   generated   by   the   machine   learning   algorithm.   The   next   step   to   be   taken   is   to  
determine   the   best   way   to   parse   JSON   responses   from   the   API   request.   We   were   able   to   make   the  
Ethernet   shield   ping   the   API   server,   so   once   we   accomplish   this,   the   artist   will   be   able   to   retrieve  
images   from   the   server.   

There   are   also   a   few   areas   of   improvement   concerning   the   design   of   the   printer.   First   of  
all,   as   mentioned   in   the   Design   section,   the   stepper   motor   on   the   right   vertical   bar   does   not  
consistently   pull   the   conveyor   belt   the   amount   it   should.   This   error   is   due   to   the   fact   that   the  
conveyor   belt   is   not   secured   tightly   enough   over   the   stepper   motor   shaft   and   the   bearing   opposite  
to   the   shaft.   Because   the   conveyor   belt   does   not   tightly   hug   against   the   spinning   motor   shaft,   the  
conveyor   belt   often   slips   off   the   teeth   of   the   motor   shaft’s   bearing.   This   error   results   in   the  
conveyor   belt   not   turning   when   the   stepper   motor   is.   The   temporary   solution   used   when   printing  
the   images   in   Figures   4.2   and   4.3   was   to   manually   push   the   horizontal   bar   down.   To   fix   this  
issue,   one   simple   solution   would   be   to   remove   the   bearing   holder   (rectangular   piece   with   circle  
in   the   middle   in   Figure   2.3)   and   move   it   to   the   right   so   that   the   conveyor   belt   would   be   tighter.   5

Another   improvement   that   could   be   made   is   to   fine-tune   the   movement   of   the   stepper  
motors   even   more.   The   Big   Easy   Driver   offers   options   for   lower   step   resolutions   that   could   be  
experimented   with.   The   resolution   currently   being   used   for   all   three   stepper   motors   is   the   full  

5   See   Figure   2.3  
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step   resolution;   however,   it   could   be   adjusted   to   the   one-sixteenth   step   resolution   option.   This  
would   make   each   step   even   smaller,   which   would   allow   more   precise   movements.   The   pixel   grid  
created   by   the   machine   learning   algorithm   could   be   larger   and   more   detailed.   Additionally,   with  
the   modified   precision   of   the   stepper   motor,   it   is   highly   likely   that   we   would   be   able   to   eliminate  
the   extra   white   space   between   each   line.   Nevertheless,   increasing   step   resolution   leads   to  
decreased   torque,   so   we   would   have   to   find   a   balance   between   a   high   enough   step   resolution   with  
a   high   enough   torque.   
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Appendix   A  
 

Part   Description  What   needed   for  Cost  Where   you’ll   buy   it  

Conveyor   belt   and  
bearings:   bearing  
attaches   to   motor  

attach   to   motors   for   x  
and   y   direction  
movement   of   pen  

$14.99  Amazon  

3   Stepper   Motors  Spin   conveyor   belts  $17.95   (Already   have  
2)  

Sparkfun   Website  

SN754410   Quadruple  
Half-H   Driver  

Stepper   motor   driver  $19.95  Sparkfun   Website  

10K   Ohm   Resistor  Solenoid   circuitry  -  Borrowed   from   Dr.  
Dann  

~12V   Solenoid  Up/down   movement  
of   writing   utensil  

-  From   Whitaker   Lab  

MOSFET  Solenoid   circuitry  -   Borrowed   from   Dr.  
Dann  

Two   AA   Batteries,  
one   9V   Battery  

Solenoid   circuitry  -  Borrowed   from   Dr.  
Dann  

Multipurpose  
304/304L   Stainless  
Steel   Rod,   ¼”  
Diameter,   2   Feet  
Long  

Horizontal   bar   -   rod  $4.34  McMaster-Carr  

½”   Diameter  
Stainless   Steel   Rod  

Vertical   bar   -   rod  -  From   Whitaker   Lab  

 
 
Appendix   B  

In   Figure   2.4,   the   leftmost   and   rightmost   rectangular   pieces   with   two   holes   in   them   were  
for   keeping   the   horizontal   bar   stable   on   the   rods   that   were   put   through   these   holes.   There   was   no  
other   way   to   secure   those   rectangular   pieces   except   to   drill   a   bracket   onto   the   rectangular   piece  
with   the   holes,   and   then   drill   that   bracket   onto   the   bottom   of   the   horizontal   bar.   However,   with  
drilling   comes   imperfect   measurements   and   alignments.   The   problem   that   arose   from   drilling   the  
rectangular   pieces   in   was   with   alignment.   The   horizontal   bar   has   four   sets   of   two   holes   (eight  
holes   total),   four   on   the   front   side   and   four   on   the   back   side   (front   side   shown   in   Figure   2.4,   back  
ones   are   not   shown).   The   back   holes   were   needed   to   guarantee   stability   of   the   horizontal   bar   on  
the   rods   during   up   and   down   movement.   Laser   cutting   these   holes,   however,   took   much   more  
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effort   and   trial   and   error   than   we   thought   it   would.   Since   the   wooden   rectangular   pieces   with   the  
front   holes   were   already   drilled   on,   the   location   of   the   back   holes   needed   to   be   exactly   parallel   to  
these   holes,   or   else   the   horizontal   bar   would   not   be   exactly   perpendicular   to   the   vertical   bars.   If  
this   happened,   the   horizontal   bar   could   be   tilted   upwards   relative   to   the   left   vertical   bar,   which  
means   that   the   image   drawn   will   be   tilted   counterclockwise.   This   problem   needed   to   be   avoided  
at   all   cost,   but   making   sure   the   back   holes   were   perfectly   aligned   with   the   front   holes   turned   out  
to   be   a   huge   difficulty.   As   previously   mentioned   the   front   holes   are   on   a   wooden   rectangular  
piece   that   was   secured   onto   the   horizontal   bar   using   a   bracket,   which   means   that   human   error  
resulted   in   the   wooden   rectangular   piece   not   being   perfectly   flush   to   all   edges   of   the   horizontal  
bar.   This   also   means   that   the   holes   on   the   wooden   rectangular   piece   were   at   a   location   different  
from   where   we   intended   them   to   be.   Due   to   this,   the   measurements   we   made   would   not   be   able  
to   perfectly   match   the   back   holes   to   the   front   ones.   To   fix   this   problem,   we   were   forced   to   use   a  
strategy   of   trial   and   error,   where   we   would   print   out   the   piece   with   the   back   holes,   assemble   the  
horizontal   bar,   and   see   whether   or   not   the   rods   would   be   at   an   angle   or   not.   If   they   were,   then   the  
next   piece   would   be   adjusted   accordingly.   After   repeating   this   process   over   and   over   again  
(around   seven   attempts),   a   satisfactory   layout   was   finally   achieved,   where   the   angling   of   the  
horizontal   bar   relative   to   the   left   vertical   bar   is   minimal.   That   said,   relative   to   the   left   vertical   bar,  
the   horizontal   bar   still   is   not   perfectly   perpendicular.   The   horizontal   bar   still   is   tilted   slightly  
upwards,   which   explains   why   the   images   drawn   by   the   printer   are   tilted   counterclockwise.  
Additionally,   the   right   vertical   bar   is   also   not   perfectly   perpendicular,   and   is   also   tilted   slightly  
counterclockwise.   There   is   no   simple   way   to   fix   this   problem   now,   as   the   whole   printer   is  
assembled   and   the   parts   cannot   be   removed   and   realigned   anymore.   The   misalignment   of   the  
printer   really   is   just   a   design   flaw.   By   laser   printing   the   wooden   rectangle   piece   as   a   section   of  
the   horizontal   bar   (using   Makerbox),   a   lot   of   the   human   error   that   comes   with   drilling   could   have  
been   avoided,   and   the   front   and   back   holes   would   have   been   more   aligned.   
 
 
Appendix   C:   Gradient   Descent   Optimization  

As   described   in   the   Theory   section,   neural   networks   use   the   backpropagation   process   to  
update   their   weights.   The   weight   adjustment   calculation   is   made   using   the   gradient   descent  
algorithm.   The   individual   adjustments   are   the   gradients   which   are   calculated   by   finding   the  
partial   derivative   of   the   loss   function.   Both   the   generator   and   discriminator   in   the   GAN   rely   on  
the   loss   from   binary   classification   of   real   vs   fake   images.   This   loss   function,   known   as   BCE  
(Binary   Cross   Entropy)   loss   is   as   follows.  

 
Figure   9.1:   Equation   for   Binary   Cross   Entropy   Loss   [27]  

 
BCE   is   commonly   used   in   binary   classification   tasks,   and   it   can   be   demonstrated   why.  

Figure   9.1   shows   an   average   of   all   of   the   individual   losses,   where    N    is   the   number   of   samples  
(images).    y    represents   the   true   label   of   the   sample,   and    y   (hat)    is   the   prediction   by   the   neural  
network.   If    y    is   0,   but   the   prediction,    y   (hat) ,   is   0.99,   the   loss   is   calculated   as   
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0 og0.99 1 ) og(1 .99))  ­ ( * l + ( ­ 0 * l ­ 0 = 2  

*For   the   purposes   of   this   example,   we   use   0.99   instead   of   1   because   we   cannot   take   log   of   0.  
 

On   the   other   hand,   if   the   neural   net   correctly   classifies   a   sample,   such   as   if   both   the  
prediction   and   label   are   1,   we   end   up   with  
 

1 og0.99 1 ) og(1 .99)) .004  ­ ( * l + ( ­ 1 * l ­ 0 = 0  
 

In   this   case,   the   weights   would   be   adjusted   very   little   in   comparison   to   the   previous  
example.   Once   we   calculate   the   loss,   we   plug   it   into   the   equation   for   gradient   descent:  
 

 
Figure   9.2:   General   Equation   for   Gradient   Descent   [28]  

 
An   individual   weight    w    is   adjusted   by   the   learning   rate    a    multiplied   by   the   partial  

derivative   of   the   BCE   loss   function   with   respect   to    w .   This   results   in   the   loss   function  
approaching   its   minimum,   as   visualized   in   Figure   9.3.   Each   weight   of   every   synapse   is   adjusted  
using   gradient   descent   as   the   backpropagation   algorithm   proceeds   from   the   output   layer   through  
each   hidden   layer.   This   adjustment   can   be   visualized.  
 

 
Figure   9.3:   Steps   of   gradient   descent   until   converging,   or   “descending,”   on   the   ideal   weight  

values.   f(x)   is   our   loss   function,   BCE,   and   the   x-axis   represents   the   weight   values   [29].  
 
Appendix   D:   GAN   and   Arduino   Code  
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Training   Code    -   This   code   implements   the   architecture   and   training   described   in   the   Theory  
section  
 
gan.py  
 
#   Copied   and   Modified   from   PyTorch   DCGAN   Faces   Tutorial  
#   Summary:   This   code   trains   the   GAN   and   then   saves   the   generator  
network   into   a   state_dict  
#   It   then   creates   graphs   and   an   animated   visualization   of  
training   (not   depicted   in   paper)  
 
from   __future__   import   print_function  
#%matplotlib   inline  
import   argparse  
import   os  
import   random  
import   torch  
import   torch.nn   as   nn  
import   torch.nn.parallel  
import   torch.backends.cudnn   as   cudnn  
import   torch.optim   as   optim  
import   torch.utils.data  
import   torchvision.datasets   as   dset  
import   torchvision.transforms   as   transforms  
import   torchvision.utils   as   vutils  
import   numpy   as   np  
import   matplotlib.pyplot   as   plt  
import   matplotlib.animation   as   animation  
from   IPython.display   import   HTML  
 
#   Set   random   seed   for   reproducibility  
manualSeed   =   999  
#manualSeed   =   random.randint(1,   10000)   #   use   if   you   want   new  
results  
print("Random   Seed:   ",   manualSeed)  
random.seed(manualSeed)  
torch.manual_seed(manualSeed)  
 
#   Root   directory   for   dataset  
dataroot   =   "/Users/dhruvm/Documents/GAN/dataset/CelebA/Img"  
 
#   Number   of   workers   for   dataloader  
workers   =   8  
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#   Batch   size   during   training  
batch_size   =   128  
 
#   Spatial   size   of   training   images.   All   images   will   be   resized   to  
this  
#     size   using   a   transformer.  
image_size   =   64  
 
#   Number   of   channels   in   the   training   images.   For   color   images  
this   is   3  
nc   =   3  
 
#   Size   of   z   latent   vector   (i.e.   size   of   generator   input)  
nz   =   100  
 
#   Size   of   feature   maps   in   generator  
ngf   =   64  
 
#   Size   of   feature   maps   in   discriminator  
ndf   =   64  
 
#   Number   of   training   epochs  
num_epochs   =   5  
 
#   Learning   rate   for   optimizers  
lr   =   0.0002  
 
#   Beta1   hyperparam   for   Adam   optimizers  
beta1   =   0.5  
 
#   Number   of   GPUs   available.   Use   0   for   CPU   mode.  
ngpu   =   1  
 
#   We   can   use   an   image   folder   dataset   the   way   we   have   it   setup.  
#   Create   the   dataset  
dataset   =   dset.ImageFolder(root=dataroot,  
                            transform=transforms.Compose([  
                                transforms.Resize(image_size),  
 
transforms.CenterCrop(image_size),  
                                transforms.ToTensor(),  
                                transforms.Normalize((0.5,   0.5,  
0.5),   (0.5,   0.5,   0.5)),  
                            ]))  
#   Create   the   dataloader  
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dataloader   =   torch.utils.data.DataLoader(dataset,  
batch_size=batch_size,  
                                          shuffle=True,  
num_workers=workers)  
 
#   Decide   which   device   we   want   to   run   on  
device   =   torch.device("cuda:0"   if   (torch.cuda.is_available()   and  
ngpu   >   0)   else   "cpu")  
 
real_batch   =   next(iter(dataloader))  
 
#   custom   weights   initialization   called   on   netG   and   netD  
def   weights_init(m):  
     classname   =   m.__class__.__name__  
     if   classname.find('Conv')   !=   -1:  
         nn.init.normal_(m.weight.data,   0.0,   0.02)  
     elif   classname.find('BatchNorm')   !=   -1:  
         nn.init.normal_(m.weight.data,   1.0,   0.02)  
         nn.init.constant_(m.bias.data,   0)  
 
#   Generator   Code  
 
class   Generator(nn.Module):  
     def   __init__(self,   ngpu):  
         super(Generator,   self).__init__()  
         self.ngpu   =   ngpu  
         self.main   =   nn.Sequential(  
             #   input   is   Z,   going   into   a   convolution  
             nn.ConvTranspose2d(   nz,   ngf   *   8,   4,   1,   0,  
bias=False),  
             nn.BatchNorm2d(ngf   *   8),  
             nn.ReLU(True),  
             #   state   size.   (ngf*8)   x   4   x   4  
             nn.ConvTranspose2d(ngf   *   8,   ngf   *   4,   4,   2,   1,  
bias=False),  
             nn.BatchNorm2d(ngf   *   4),  
             nn.ReLU(True),  
             #   state   size.   (ngf*4)   x   8   x   8  
             nn.ConvTranspose2d(   ngf   *   4,   ngf   *   2,   4,   2,   1,  
bias=False),  
             nn.BatchNorm2d(ngf   *   2),  
             nn.ReLU(True),  
             #   state   size.   (ngf*2)   x   16   x   16  
             nn.ConvTranspose2d(   ngf   *   2,   ngf,   4,   2,   1,  
bias=False),  
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             nn.BatchNorm2d(ngf),  
             nn.ReLU(True),  
             #   state   size.   (ngf)   x   32   x   32  
             nn.ConvTranspose2d(   ngf,   nc,   4,   2,   1,   bias=False),  
             nn.Tanh()  
             #   state   size.   (nc)   x   64   x   64  
         )  
 
     def   forward(self,   input):  
         return   self.main(input)  
 
#   Create   the   generator  
netG   =   Generator(ngpu).to(device)  
 
#   Handle   multi-gpu   if   desired  
if   (device.type   ==   'cuda')   and   (ngpu   >   1):  
     netG   =   nn.DataParallel(netG,   list(range(ngpu)))  
 
#   Apply   the   weights_init   function   to   randomly   initialize   all  
weights  
#    to   mean=0,   stdev=0.2.  
netG.apply(weights_init)  
 
#   Print   the   model  
print(netG)  
 
class   Discriminator(nn.Module):  
     def   __init__(self,   ngpu):  
         super(Discriminator,   self).__init__()  
         self.ngpu   =   ngpu  
         self.main   =   nn.Sequential(  
             #   input   is   (nc)   x   64   x   64  
             nn.Conv2d(nc,   ndf,   4,   2,   1,   bias=False),  
             nn.LeakyReLU(0.2,   inplace=True),  
             #   state   size.   (ndf)   x   32   x   32  
             nn.Conv2d(ndf,   ndf   *   2,   4,   2,   1,   bias=False),  
             nn.BatchNorm2d(ndf   *   2),  
             nn.LeakyReLU(0.2,   inplace=True),  
             #   state   size.   (ndf*2)   x   16   x   16  
             nn.Conv2d(ndf   *   2,   ndf   *   4,   4,   2,   1,   bias=False),  
             nn.BatchNorm2d(ndf   *   4),  
             nn.LeakyReLU(0.2,   inplace=True),  
             #   state   size.   (ndf*4)   x   8   x   8  
             nn.Conv2d(ndf   *   4,   ndf   *   8,   4,   2,   1,   bias=False),  
             nn.BatchNorm2d(ndf   *   8),  
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             nn.LeakyReLU(0.2,   inplace=True),  
             #   state   size.   (ndf*8)   x   4   x   4  
             nn.Conv2d(ndf   *   8,   1,   4,   1,   0,   bias=False),  
             nn.Sigmoid()  
         )  
 
     def   forward(self,   input):  
         return   self.main(input)  
 
#   Create   the   Discriminator  
netD   =   Discriminator(ngpu).to(device)  
 
#   Handle   multi-gpu   if   desired  
if   (device.type   ==   'cuda')   and   (ngpu   >   1):  
     netD   =   nn.DataParallel(netD,   list(range(ngpu)))  
 
#   Apply   the   weights_init   function   to   randomly   initialize   all  
weights  
#    to   mean=0,   stdev=0.2.  
netD.apply(weights_init)  
 
#   Print   the   model  
print(netD)  
 
#   Initialize   BCELoss   function  
criterion   =   nn.BCELoss()  
 
#   Create   batch   of   latent   vectors   that   we   will   use   to   visualize  
#    the   progression   of   the   generator  
fixed_noise   =   torch.randn(64,   nz,   1,   1,   device=device)  
 
#   Establish   convention   for   real   and   fake   labels   during   training  
real_label   =   1  
fake_label   =   0  
 
#   Setup   Adam   optimizers   for   both   G   and   D  
optimizerD   =   optim.Adam(netD.parameters(),   lr=lr,   betas=(beta1,  
0.999))  
optimizerG   =   optim.Adam(netG.parameters(),   lr=lr,   betas=(beta1,  
0.999))  
 
#   Training   Loop  
 
#   Lists   to   keep   track   of   progress  
img_list   =   []  
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G_losses   =   []  
D_losses   =   []  
iters   =   0  
 
print("Starting   Training   Loop...")  
#   For   each   epoch  
for   epoch   in   range(num_epochs):  
     #   For   each   batch   in   the   dataloader  
     for   i,   data   in   enumerate(dataloader,   0):  
 
         ############################  
         #   (1)   Update   D   network:   maximize   log(D(x))   +   log(1   -  
D(G(z)))  
         ###########################  
         ##   Train   with   all-real   batch  
         netD.zero_grad()  
         #   Format   batch  
         real_cpu   =   data[0].to(device)  
         b_size   =   real_cpu.size(0)  
         label   =   torch.full((b_size,),   real_label,   device=device)  
         #   Forward   pass   real   batch   through   D  
         output   =   netD(real_cpu).view(-1)  
         #   Calculate   loss   on   all-real   batch  
         errD_real   =   criterion(output,   label)  
         #   Calculate   gradients   for   D   in   backward   pass  
         errD_real.backward()  
         D_x   =   output.mean().item()  
 
         ##   Train   with   all-fake   batch  
         #   Generate   batch   of   latent   vectors  
         noise   =   torch.randn(b_size,   nz,   1,   1,   device=device)  
         #   Generate   fake   image   batch   with   G  
         fake   =   netG(noise)  
         label.fill_(fake_label)  
         #   Classify   all   fake   batch   with   D  
         output   =   netD(fake.detach()).view(-1)  
         #   Calculate   D's   loss   on   the   all-fake   batch  
         errD_fake   =   criterion(output,   label)  
         #   Calculate   the   gradients   for   this   batch  
         errD_fake.backward()  
         D_G_z1   =   output.mean().item()  
         #   Add   the   gradients   from   the   all-real   and   all-fake  
batches  
         errD   =   errD_real   +   errD_fake  
         #   Update   D  

 



Mangtani,   Tian   36  

         optimizerD.step()  
 
         ############################  
         #   (2)   Update   G   network:   maximize   log(D(G(z)))  
         ###########################  
         netG.zero_grad()  
         label.fill_(real_label)    #   fake   labels   are   real   for  
generator   cost  
         #   Since   we   just   updated   D,   perform   another   forward   pass  
of   all-fake   batch   through   D  
         output   =   netD(fake).view(-1)  
         #   Calculate   G's   loss   based   on   this   output  
         errG   =   criterion(output,   label)  
         #   Calculate   gradients   for   G  
         errG.backward()  
         D_G_z2   =   output.mean().item()  
         #   Update   G  
         optimizerG.step()  
 
         #   Output   training   stats  
         if   i   %   50   ==   0:  
             print('[%d/%d][%d/%d]\tLoss_D:   %.4f\tLoss_G:  
%.4f\tD(x):   %.4f\tD(G(z)):   %.4f   /   %.4f'  
                   %   (epoch,   num_epochs,   i,   len(dataloader),  
                      errD.item(),   errG.item(),   D_x,   D_G_z1,  
D_G_z2))  
 
         #   Save   Losses   for   plotting   later  
         G_losses.append(errG.item())  
         D_losses.append(errD.item())  
 
         #   Check   how   the   generator   is   doing   by   saving   G's   output  
on   fixed_noise  
         if   (iters   %   500   ==   0)   or   ((epoch   ==   num_epochs-1)   and   (i  
==   len(dataloader)-1)):  
             with   torch.no_grad():  
                 fake   =   netG(fixed_noise).detach().cpu()  
             img_list.append(vutils.make_grid(fake,   padding=2,  
normalize=True))  
 
         iters   +=   1  
 
torch.save(netG.state_dict(),   "generator")  
 
plt.figure(figsize=(10,5))  
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plt.title("Generator   (G)   and   Discriminator   (D)   Loss   Over   5  
Epochs   of   Training")  
plt.plot(G_losses,label="G")  
plt.plot(D_losses,label="D")  
plt.xlabel("Iterations")  
plt.ylabel("Loss")  
plt.legend()  
plt.show()  
 
fig   =   plt.figure(figsize=(8,8))  
plt.axis("off")  
ims   =   [[plt.imshow(np.transpose(i,(1,2,0)),   animated=True)]   for  
i   in   img_list]  
ani   =   animation.ArtistAnimation(fig,   ims,   interval=1000,  
repeat_delay=1000,   blit=True)  
 
HTML(ani.to_jshtml())  
 
#   Grab   a   batch   of   real   images   from   the   dataloader  
real_batch   =   next(iter(dataloader))  
 
#   Plot   the   real   images  
plt.figure(figsize=(15,15))  
plt.subplot(1,2,1)  
plt.axis("off")  
plt.title("Real   Images")  
plt.imshow(np.transpose(vutils.make_grid(real_batch[0].to(device) 
[:64],   padding=5,   normalize=True).cpu(),(1,2,0)))  
 
#   Plot   the   fake   images   from   the   last   epoch  
plt.subplot(1,2,2)  
plt.axis("off")  
plt.title("Fake   Images")  
plt.imshow(np.transpose(img_list[-1],(1,2,0)))  
plt.show()  
 
Cloud   Code    -   The   handler   method   in   this   code   is   called   when   the   API   is   pinged   by   the   Arduino  
gan_generator.py  
 
#   Summary:   This   code   is   uploaded   to   S3   and   is   used   in   Lambda.  
#   It   imports   the   trained   generator,   creates   an   image,   displays  
#   it,   converts   it   to   greyscale,   and   returns   the   image   to   the  
API.  
#   For   now,   we   manually   input   the   2D   array   to   the   Arduino,   but  
this  
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#   code   will   be   used   when   we   get   the   API   working   with   the   Arduino  
code.  
 
#%matplotlib   inline  
import   argparse  
import   os  
 
#   random   library   needed   to   generate   random   noise   vector  
import   random  
 
#   PyTorch   library  
from   torch   import   stack  
from   torch   import   cat  
from   torch   import   load  
from   torch   import   randn  
import   torch.nn   as   nn  
 
#   other   useful   libraries  
import   numpy   as   np  
import   math  
import   matplotlib.pyplot   as   plt  
from   numpy   import   savetxt  
from   numpy   import   asarray  
 
#   size   of   batches   during   Gradient   Descent  
batch_size   =   128  
image_size   =   64  
 
#   number   of   color   channels  
nc   =   3  
 
#   size   of   random   noise   vector   inputted   to   generator  
nz   =   100  
 
#   size   of   images   produced   by   generator  
ngf   =   64  
 
#   Number   of   GPUs   available.   Use   0   for   CPU   mode.  
ngpu   =   1  
 
#   Generator   Network  
class   Generator(nn.Module):  
     def   __init__(self,   ngpu):  
         super(Generator,   self).__init__()  
         self.ngpu   =   ngpu  
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         self.main   =   nn.Sequential(  
             #   input   is   Z,   going   into   a   convolution  
             nn.ConvTranspose2d(   nz,   ngf   *   8,   4,   1,   0,  
bias=False),  
             nn.BatchNorm2d(ngf   *   8),  
             nn.ReLU(True),  
             #   state   size.   (ngf*8)   x   4   x   4  
             nn.ConvTranspose2d(ngf   *   8,   ngf   *   4,   4,   2,   1,  
bias=False),  
             nn.BatchNorm2d(ngf   *   4),  
             nn.ReLU(True),  
             #   state   size.   (ngf*4)   x   8   x   8  
             nn.ConvTranspose2d(   ngf   *   4,   ngf   *   2,   4,   2,   1,  
bias=False),  
             nn.BatchNorm2d(ngf   *   2),  
             nn.ReLU(True),  
             #   state   size.   (ngf*2)   x   16   x   16  
             nn.ConvTranspose2d(   ngf   *   2,   ngf,   4,   2,   1,  
bias=False),  
             nn.BatchNorm2d(ngf),  
             nn.ReLU(True),  
             #   state   size.   (ngf)   x   32   x   32  
             nn.ConvTranspose2d(   ngf,   nc,   4,   2,   1,   bias=False),  
             nn.Tanh()  
             #   state   size.   (nc)   x   64   x   64  
         )  
 
     def   forward(self,   input):  
         return   self.main(input)  
 
#   function   taken   from   PyTorch   library   for   converting   image   into  
2D   array  
def   make_grid(tensor,   nrow=8,   padding=2,  
               normalize=False,   range=None,   scale_each=False,  
pad_value=0):  
     """Make   a   grid   of   images.  
 
     Args:  
         tensor   (Tensor   or   list):   4D   mini-batch   Tensor   of   shape  
(B   x   C   x   H   x   W)  
             or   a   list   of   images   all   of   the   same   size.  
         nrow   (int,   optional):   Number   of   images   displayed   in   each  
row   of   the   grid.  
             The   Final   grid   size   is   (B   /   nrow,   nrow).   Default   is  
8.  
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         padding   (int,   optional):   amount   of   padding.   Default   is  
2.  
         normalize   (bool,   optional):   If   True,   shift   the   image   to  
the   range   (0,   1),  
             by   subtracting   the   minimum   and   dividing   by   the  
maximum   pixel   value.  
         range   (tuple,   optional):   tuple   (min,   max)   where   min   and  
max   are   numbers,  
             then   these   numbers   are   used   to   normalize   the   image.  
By   default,   min   and   max  
             are   computed   from   the   tensor.  
         scale_each   (bool,   optional):   If   True,   scale   each   image  
in   the   batch   of  
             images   separately   rather   than   the   (min,   max)   over  
all   images.  
         pad_value   (float,   optional):   Value   for   the   padded  
pixels.  
 
     Example:  
         See   this   notebook   ̀here  
<https://gist.github.com/anonymous/bf16430f7750c023141c562f3e9f2a 
91>`_  
 
     """  
 
     #   if   list   of   tensors,   convert   to   a   4D   mini-batch   Tensor  
     if   isinstance(tensor,   list):  
         tensor   =   stack(tensor,   dim=0)  
 
     if   tensor.dim()   ==   2:    #   single   image   H   x   W  
         tensor   =   tensor.unsqueeze(0)  
     if   tensor.dim()   ==   3:    #   single   image  
         if   tensor.size(0)   ==   1:    #   if   single-channel,   convert   to  
3-channel  
             tensor   =   cat((tensor,   tensor,   tensor),   0)  
         tensor   =   tensor.unsqueeze(0)  
 
     if   tensor.dim()   ==   4   and   tensor.size(1)   ==   1:    #  
single-channel   images  
         tensor   =   cat((tensor,   tensor,   tensor),   1)  
 
     if   normalize   is   True:  
         tensor   =   tensor.clone()    #   avoid   modifying   tensor  
in-place  
         if   range   is   not   None:  
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             assert   isinstance(range,   tuple),   \  
                 "range   has   to   be   a   tuple   (min,   max)   if  
specified.   min   and   max   are   numbers"  
 
         def   norm_ip(img,   min,   max):  
             img.clamp_(min=min,   max=max)  
             img.add_(-min).div_(max   -   min   +   1e-5)  
 
         def   norm_range(t,   range):  
             if   range   is   not   None:  
                 norm_ip(t,   range[0],   range[1])  
             else:  
                 norm_ip(t,   float(t.min()),   float(t.max()))  
 
         if   scale_each   is   True:  
             for   t   in   tensor:    #   loop   over   mini-batch   dimension  
                 norm_range(t,   range)  
         else:  
             norm_range(tensor,   range)  
 
     if   tensor.size(0)   ==   1:  
         return   tensor.squeeze()  
 
     #   make   the   mini-batch   of   images   into   a   grid  
     nmaps   =   tensor.size(0)  
     xmaps   =   min(nrow,   nmaps)  
     ymaps   =   int(math.ceil(float(nmaps)   /   xmaps))  
     height,   width   =   int(tensor.size(2)   +   padding),  
int(tensor.size(3)   +   padding)  
     grid   =   tensor.new_full((3,   height   *   ymaps   +   padding,   width   *  
xmaps   +   padding),   pad_value)  
     k   =   0  
     for   y   in   irange(ymaps):  
         for   x   in   irange(xmaps):  
             if   k   >=   nmaps:  
                 break  
             grid.narrow(1,   y   *   height   +   padding,   height   -  
padding)\  
                 .narrow(2,   x   *   width   +   padding,   width   -  
padding)\  
                 .copy_(tensor[k])  
             k   =   k   +   1  
     return   grid  
 

 



Mangtani,   Tian   42  

#   handler   function   is   run   by   the   API   when   the   Arduino   makes   a  
request  
#   event   and   context   are   not   necessary   for   this   project   but   are  
required   by   Lambda  
def   handler(event,   context):  
 
     #   create   generator   network   for   importing   the   pretrained  
state_dict  
     netG   =   Generator(ngpu)  
 
     #   load   in   the   trained   weights   (weights   were   found   in   gan.py)  
     netG.load_state_dict(load("generator"))  
 
     #   random   noise   input   that   will   be   converted   to   an   image  
     noise   =   randn(1,   nz,   1,   1)  
 
     #   forward   propagate   with   generator   to   get   new   image  
     fake   =   netG(noise).detach().cpu()  
 
     #   convert   image   to   2D   array   using   PyTorch   function  
     img   =   make_grid(fake,   padding=2,   normalize=True)  
 
     #   resize   for   displaying   purposes  
     img   =   np.transpose(img,(1,2,0))  
 
     #   display   produced   image  
     plt.figure(figsize=(15,15))  
     plt.imshow(img)  
     plt.show()  
 
     #   convert   numpy   array   to   Python   array  
     img   =   img.tolist()  
 
     #   scale   down   image   due   to   memory   issues   with   Arduino  
     img   =   img[:60]  
     for   i   in   range(len(img)):  
         img[i]   =   img[i][:60]  
 
     #   convert   image   to   greyscale   and   turn   it   into   a   string   for  
returning   to   Arduino  
     string   =   "{"  
     for   i   in   range(len(img)):  
         string   +=   "{"  
         for   j   in   range(len(img[i])):  
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             #   equations/process   for   color   to   greyscale  
(https://stackoverflow.com/questions/17615963/standard-rgb-to-gra 
yscale-conversion)  
             clinear   =   0.2126   *   img[i][j][0]   +   0.7152   *  
img[i][j][1]   +   0.0722   *   img[i][j][2]  
 
             csrgb   =   12.92   *   clinear  
             if   clinear   >   0.0031308:  
                 csrgb   =   1.055   *   (clinear   **   (1/2.4))   -   0.055  
             img[i][j]   =   round(csrgb)  
             if   j   ==   len(img[i])-1:  
                 string   +=   str(round(csrgb))  
             else:  
                 string   +=   str(round(csrgb))   +   ","  
         if   i   ==   len(img)   -   1:  
             string   +=   "}"  
         else:  
             string   +=   "},"  
     string   +=   "}"  
 
     #   save   array   into   text   file   just   in   case   we   need   to   manually  
upload   to   Arduino  
     data   =   asarray(img)  
     savetxt('data.csv',   data,   delimiter=',')  
   
     response   =   {  
         "statusCode":   200,  
         "headers":   {  
             'Content-Type':   'application/json',   
             "Access-Control-Allow-Headers":  
'Content-Type,X-Amz-Date,Authorization,X-Api-Key,X-Amz-Security-T 
oken',  
             "Access-Control-Allow-Origin":   '*',  
             "Access-Control-Allow-Methods":   'GET,OPTIONS'  
         },  
         "body":   string,  
         "isBase64Encoded":   False  
     }  
     return   string  
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Arduino   Mega   Code   -   Draws   out   image   2D   array   manually   entered  
 
/**  
  *   Summary:   Stepper   code   reads   image   array   and   draws   out   image  
  *   using   a   series   of   for   loops.   Given   that   we   were   
  *   unable   to   integrate   the   API,the   image   array   is   manually  
  *   added   directly   from   the   generator.  
  */  
 
//   digital   pin   assignments   for   all   3   stepper   motors   and   solenoid  
 
#define   stp1   2  
#define   dir1   3  
 
#define   stp2   4  
#define   dir2   5  
 
#define   stp3   6  
#define   dir3   7  
 
#define   solenoid   8  
 
//   whether   the   solenoid   is   currently   drawing  
boolean   solenoidTriggered   =   false;  
 
//   image   size   in   centimeters  
float   image_size   =   10;  
 
//   number   of   pixels   in   image  
float   num_pixels   =   60;  
 
//   number   of   steps   required   to   cover   one   pixel  
//   2000   was   decided   based   on   the   size   of   the   paper  
float   pixel_iterations   =   image_size/num_pixels   *   2000;  
 
//   delay   to   allow   solenoid   to   finish   triggering   or   retracting  
before   moving   on  
int   solenoidDelay   =   200;  
 
//   delay   between   each   step   in   moving   vertically   down   the   paper  
int   backwardsDelay   =   30;  
 
//   imaged   2D   array  
int   grid   [60][60]   =   ***   manually   imported   array   ommitted   to   save  
space   **;  
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//   changes   direction   of   a   stepper   motor  
void   flipDirection(int   dir,   int   val)   {  
   digitalWrite(dir,   val);  
}  
 
void   setup()   {  
   //   put   your   setup   code   here,   to   run   once:  
   Serial.begin(9600);  
   pinMode(stp1,   OUTPUT);  
   pinMode(dir1,   OUTPUT);  
 
   pinMode(stp2,   OUTPUT);  
   pinMode(dir2,   OUTPUT);  
 
   pinMode(stp3,   OUTPUT);  
   pinMode(dir3,   OUTPUT);  
 
   pinMode(solenoid,   OUTPUT);  
 
   //   delay   to   give   us   time   to   switch   on   power   supply  
   delay(6000);  
 
   digitalWrite(stp1,   LOW);  
   digitalWrite(stp2,   LOW);  
 
   //   number   of   steps   to   complete   a   full   row  
   int   iterations   =   (int)   pixel_iterations*num_pixels;  
   
   Serial.println("starting");  
 
   //   for   loop   for   vertical   axis  
   for(int   i=0;   i<(int)   num_pixels;   i++)   {  
     //   for   loop   for   horizontal   axis  
     for(int   j=0;   j<iterations;   j++)   {  
       //   step   top   bar   stepper   motor   (horizontally)  
       flipDirection(dir3,   LOW);  
       digitalWrite(stp3,   HIGH);  
       digitalWrite(stp3,   LOW);  
 
       //   check   if   pixel   is   0   or   1  
       if(grid[i][(int)   (((float)   j)/pixel_iterations)]   ==   0)   {  
         //   if   solenoid   isn't   already   triggered,   trigger   it  
         if(!solenoidTriggered)   {  
           digitalWrite(solenoid,   HIGH);  
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           delay(solenoidDelay);  
           solenoidTriggered   =   true;  
         }  
       }   else   {  
         //   if   solenoid   is   already   triggered,   retract   it  
         if(solenoidTriggered)   {  
           digitalWrite(solenoid,   LOW);  
           delay(solenoidDelay);  
           solenoidTriggered   =   false;  
         }  
       }  
     }  
 
     digitalWrite(solenoid,   LOW);  
 
     //   shift   horizontal   stepper   motor   so   that   solenoid   returns  
to  
     //   left   side   of   axis  
     for(int   j=0;   j<iterations;   j++)   {  
       flipDirection(dir3,   HIGH);  
       digitalWrite(stp3,   HIGH);  
       digitalWrite(stp3,   LOW);  
       delayMicroseconds(backwardsDelay);  
     }  
 
     //   shift   vertical   stepper   motor   pair   so   that   solenoid  
proceeds  
     //   to   the   next   row  
     for(int   j=0;   j<(int)   pixel_iterations;   j++)   {  
       flipDirection(dir1,   HIGH);  
       flipDirection(dir2,   HIGH);  
       digitalWrite(stp1,   HIGH);  
       digitalWrite(stp2,   HIGH);  
       digitalWrite(stp1,   LOW);  
       digitalWrite(stp2,   LOW);  
       delayMicroseconds(1500);  
     }  
   }  
 
//   unused  
void   loop()   {}  
 
 
 
 

 


